United States Patent

US009058199B2

(12) 10) Patent No.: US 9,058,199 B2
Tsirkin 45) Date of Patent: Jun. 16, 2015
(54) PRE-WARMING DESTINATION FOR FAST 58} % 83245149122 :} . i; %8} é I];Takakgawal 709/226
rocketal. ...
LIVE MIGRATION 2012/0159101 Al 6/2012 Miyoshi
(75) Inventor: Michael Tsirkin, Yokneam Yillit (IL) OTHER PUBLICATIONS
(73) Assignee: Red Hat Israel, Ltd., Raanana (IL) Clark, et al. “L_ive Migration (_)f Virtl_lal Machines” 2005.
USPTO Non-Final Office Action mailed Jan. 28, 2014 for U.S. Appl.
. No. 13/484,382.
(*) Notice: Subject to any (gsglalmeé ; the zermsfﬂ;; USPTO Final Office Action mailed Aug. 12, 2014 for U.S. Appl. No.
patent 1s extended or adjusted under 13/484,382.
U.S.C. 154(b) by 204 days. USPTO Non-Final Office Action mailed Dec. 15,2014 for U.S. Appl.
No. 13/484,382.
(21) Appl. No.: 13/484,462 USPTO Non-Final Office Action mailed Feb. 14,2014 for U.S. Appl.
No. 13/484,753.
(22) Filed: May 31, 2012 USPTO Final Office Action mailed Dec. 4, 2014 for U.S. Appl. No.
13/484,753.
(65) Prior Publication Data * cited b .
cited by examiner
US 2013/0326174 Al Dec. 5,2013
Primary Examiner — Midys Rojas
(51) Int.CL () (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
GO6F 12/00 2006.01
GO6F 9/455 (2006.01) (57) ABSTRACT
GOGF 3/06 (2006.01) A method for fast migrating of a source virtual machine
GO6F 12/08 (2006.01) — .
GO6F 12/06 (2006.01) located on a source host to one or more destination hosts is
GO6F 11/14 (200 6. o1) provided. A source migration manager receives an identity of
(52) US.Cl ’ a destination host. The source migration manager copies at
T least dat t ding t rti fa state of
CC o assos corsony g el s emgntig oaprinl s
(20132'811 g; l?fég 0162]4{0]8]%2_1;2021 3’158?7 ézo/gg migration manager remains in a warm-up phase and contin-
]]/](484 201)3’ 01): GOGF 2009(/4557' 2)613 o1 ues copying data segments corresponding to the state of the
. (v); (01) source virtual machine to the destination host, even if the
(58) Field of Classification Search entire state of the source virtual machine has been copied to
USPC s 711/6, lQO, 161, 162 the destination host. The source migration manager receives a
See application file for complete search history. command to migrate the source virtual machine to the desti-
(56) References Cited nation host after copying the at least one data segment to the

2007/0180436 Al*

U.S. PATENT DOCUMENTS
7,680,919 B2 3/2010 Nelson

8/2007 Travostino etal. 717/138

200

~

destination host. If a warm-up exit condition has been
attained, the source migration manager exits the warm-up
migration phase.

20 Claims, 7 Drawing Sheets

202

DESTINATION HOST.

| A SOURCE MIGRATION MANAGER IDENTIFIES A

204

THE SOURCE MIGRATION MANAGER COPIES AT LEAST ONE
DATA SEGMENT CORRESPONDING TO A PORTION OF A STATE
OF A SOURCE VIRTUAL MACHINE TO THE DESTINATION
HOST.

208

THE SOURCE MIGRATION MANAGER RECEIVES AN
INDICATION THAT A WARM-UP EXIT CONDITION
HAS BEEN ATTAINED.

208

'THE SOURCE MIGRATION MANAGER REMAINS IN A WARM-UP
PHASE AND CONTINUES COPYING DATA SEGMENTS
CORRESPONDING TO THE STATE OF THE SOURCE VIRTUAL
MACHINE TO THE DESTINATION HOST.

210

THE SOURCE MIGRATION MANAGER RECEIVES A COMMAND
TO MIGRATE THE SOURCE VIRTUAL MACHINE TO THE
DESTINATION HOST AFTER COPYING THE AT LEAST ONE
DATA SEGMENT TO THE DESTINATION HOST.

212

THE SOURCE MIGRATION MANAGER EXITS A WARM-UP
PHASE OF MIGRATION.

US 9,058,199 B2

Sheet 1 of 7

Jun. 16, 2015

U.S. Patent

uoslt uozl

AJOWINW Nndo

U0ZT SO LSOH

ugS 1 JOSINYIdAH
NOILYNILS3d

up9l d3OVNVIN
NOILVHOIN
NOILLYNILS3A

ugvl
183nNo
ugeEl
IANIHOVIN
IVNLAIA
NOILVYNILS3A

upol 1SOH NOILVNILS3A

[+0]:]" a0l
AHOWIW Ndo
9027 SO 1SOH
07T
T0GT HOSIAYIAH SO 1s3No
NOILYNILS3A T
IANIHOVA
J097 HIADVNYN TYOLHIA
NOLLVHOIW NOILYNILS3A
NOILYNILS3A

4001 1L'SOH NOILVYNILS3A

I 34NOI4

AJONWINW Nndo

E08L B0/l

B091 HIOVNVIN
NOILVHOIN
324dNOS

BOS| HOSINYIJAH
304NOS

B0Zl SO 1SOH

eovl
SO 183NS

B0tl INIHOVIA
IVNLYIA
3J0HNOS

B00T LSOH 324N0S

U.S. Patent Jun. 16, 2015 Sheet 2 of 7 US 9,058,199 B2

200

~

A SOURCE MIGRATION MANAGER IDENTIFIES A
DESTINATION HOST.

202

l 7 204
THE SOURCE MIGRATION MANAGER COPIES AT LEAST ONE
DATA SEGMENT CORRESPONDING TO A PORTION OF A STATE
OF A SOURCE VIRTUAL MACHINE TO THE DESTINATION
HOST.

¢ 206
.
THE SOURCE MIGRATION MANAGER RECEIVES AN
INDICATION THAT A WARM-UP EXIT CONDITION
HAS BEEN ATTAINED.

i ,— 208
THE SOURCE MIGRATION MANAGER REMAINS IN A WARM-UP
PHASE AND CONTINUES COPYING DATA SEGMENTS
CORRESPONDING TO THE STATE OF THE SOURCE VIRTUAL
MACHINE TO THE DESTINATION HOST.

l 210

THE SOURCE MIGRATION MANAGER RECEIVES A COMMAND
TO MIGRATE THE SOURCE VIRTUAL MACHINE TO THE
DESTINATION HOST AFTER COPYING THE AT LEAST ONE
DATA SEGMENT TO THE DESTINATION HOST.

l 212

THE SOURCE MIGRATION MANAGER EXITS A WARM-UP
PHASE OF MIGRATION.

END

FIGURE 2

U.S. Patent Jun. 16, 2015 Sheet 3 of 7 US 9,058,199 B2

300

\

A SOURCE MIGRATION MANAGER IDENTIFIES A
DESTINATION HOST.

l 304

THE SOURCE MIGRATION MANAGER COPIES AT LEAST ONE
DATA SEGMENT CORRESPONDING TO A PORTION OF A STATE
OF A SOURCE VIRTUAL MACHINE TO THE DESTINATION
HOST.

l 306

THE SOURCE MIGRATION MANAGER RECEIVES A COMMAND
TO MIGRATE THE SOURCE VIRTUAL MACHINE TO THE
DESTINATION HOST.

l 308

THE SOURCE MIGRATION MANAGER REMAINS IN A WARM-UP
PHASE AND CONTINUES COPYING DATA SEGMENTS
CORRESPONDING TO THE STATE OF THE SOURCE VIRTUAL
MACHINE TO THE DESTINATION HOST.

l 310

THE SOURCE MIGRATION MANAGER RECEIVES AN
INDICATION THAT A WARM-UP EXIT CONDITION HAS BEEN
ATTAINED AFTER COPYING AT LEAST ONE DATA SEGMENT.

l 312

THE SOURCE MIGRATION MANAGER EXITS A WARM-UP
PHASE OF MIGRATION.

302

END

FIGURE 3

U.S. Patent Jun. 16, 2015 Sheet 4 of 7 US 9,058,199 B2

400

~

402

THE SOURCE MIGRATION MANAGER STOPS THE SOURCE
VIRTUAL MACHINE AND COPIES A REMAINING PORTION OF
THE STATE OF THE SOURCE VIRTUAL MACHINE TO THE
DESTINATION HOST.

l — 404

THE SOURCE MIGRATION MANAGER RECEIVES AN
INDICATION OF SUCCESSFUL BOOTING OF DESTINATION
VIRTUAL MACHINE ON THE DESTINATION HOST.

406
THE SOURCE MIGRATION MANAGER INITIATES A POST-COPY
STAGE OF MIGRATION.
— 408
THE SOURCE MIGRATION MANAGER TERMINATES THE
SOURCE VIRTUAL MACHINE.
END

FIGURE 4

U.S. Patent Jun. 16, 2015 Sheet 5 of 7 US 9,058,199 B2

500

~

A SOURCE MIGRATION MANAGER RECEIVES A COMMAND TO
MIGRATE A SOURCE VIRTUAL MACHINE TO A PLURALITY OF
DESTINATION HOSTS.

¢ 504

THE SOURCE MIGRATION MANAGER COPIES A STATE OF THE
SOURCE VIRTUAL MACHINE TO THE PLURALITY OF
DESTINATION HOSTS.

l 506

THE SOURCE MIGRATION MANAGER RECEIVES AN
INDICATION OF SUCCESSFUL BOOTING OF A DESTINATION
VIRTUAL MACHINE

l - 508

THE SOURCE MIGRATION MANAGER TERMINATES
TRANSMISSION OF THE STATE OF THE SOURCE VIRTUAL
MACHINE TO THE REMAINING PLURALITY OF DESTINATION
HOSTS.

¢ 510

THE SOURCE MIGRATION MANAGER TERMINATES THE
SOURCE VIRTUAL MACHINE.

502

END

FIGURE 5

U.S. Patent Jun. 16, 2015 Sheet 6 of 7 US 9,058,199 B2

Y

A SOURCE MIGRATION MANAGER IDENTIFIES A PLURALITY
OF DESTINATION HOSTS.

l 604

THE SOURCE MIGRATION MANAGER COPIES AT LEAST ONE
DATA SEGMENT CORRESPONDING TO A PORTION OF A STATE
OF A SOURCE VIRTUAL MACHINE TO THE PLURALITIES OF
DESTINATION HOSTS.

!

THE SOURCE MIGRATION MANAGER RECEIVES A COMMAND
TO MIGRATE THE SOURCE VIRTUAL MACHINE TO ONE OR
MORE SELECTED DESTINATION HOSTS OF THE PLURALITY OF
DESTINATION HOSTS AFTER COPYING AT LEAST ONE DATA
SEGMENT.

608

THE SOURCE MIGRATION MANAGER RECEIVES AN
INDICATION OF SUCCESSFUL BOOTING OF THE DESTINATION
VIRTUAL MACHINE CORRESPONDING TO AT LEAST ONE OF
THE PLURALITY OF DESTINATION HOSTS.

l 610

THE SOURCE MIGRATION MANAGER TERMINATES
TRANSMISSION OF THE STATE OF THE SOURCE VIRTUAL
MACHINE TO A REMAINING PLURALITY OF DESTINATION
HOSTS.

l 612

THE SOURCE MIGRATION MANAGER TERMINATES THE
SOURCE VIRTUAL MACHINE.

602

,— 606

END

FIGURE 6

U.S. Patent

702 ey
722 e

704 R
722

706

708 <

Figure 7

Jun. 16, 2015 Sheet 7 of 7 US 9,058,199 B2
700
A T30
PROCESSING DEVICE
. VIDEO ~ 710
SOURCE MIGRATION DISPLAY
MANAGER
MAIN MEMORY
o ALPHA-NUMERIC - 712
. SOURCE MIGRATION INPUT DEVICE
MANAGER
STATIC — CURSOR CONTROL = 714
MEMORY DEVICE
7]
-
M
NETWORK SIGNAL GENERATION |- 716
INTERFACE DEVICE DEVICE
DATA STORAGE DEVICE 1 718
MACHINE-READABLE || ... 72
STORAGE MEDIUM
NETWORK SoURCE MicRaTIoN M 722
MANAGER

US 9,058,199 B2

1
PRE-WARMING DESTINATION FOR FAST
LIVE MIGRATION

RELATED APPLICATIONS

The present application is related to co-filed U.S. patent
application Ser. No. 13/484,753, filed May 31, 2012 entitled
“Pre-Warming Of Multiple Destinations For Fast Live Migra-
tion”, and to co-filed U.S. patent application Ser. No. 13/484,
382, filed May 31, 2012 entitled “Multiple Destination Live
Migration”, which are assigned to the assignee of the present
application.

TECHNICAL FIELD

Embodiments of the present invention relate to a computer
system, and more specifically, to a method for fast migrating
of'a source virtual machine located on a source host to one or
more destination hosts.

BACKGROUND

The use of virtualization is becoming widespread. Virtual-
ization describes a software abstraction that separates a com-
puter resource and its use from an underlying physical device.
Generally, a virtual machine (VM) provides a software execu-
tion environment and may have a virtual processor, virtual
system memory, virtual storage, and various virtual devices.
Virtual machines have the ability to accomplish tasks inde-
pendently of particular hardware implementations or con-
figurations.

Virtualization permits multiplexing of an underlying host
computer between different virtual machines. The host com-
puter allocates a certain amount of its resources to each of the
virtual machines. Each virtual machine is then able to use the
allocated resources to execute applications, including oper-
ating systems (referred to as guest operating systems (OS)).
The software layer providing the virtualization is commonly
referred to as a hypervisor and is also known as a virtual
machine monitor (VMM), a kernel-based hypervisor, or a
host operating system. The hypervisor emulates the underly-
ing hardware of the host computer, making the use of the
virtual machine transparent to the guest operating system and
the user of the computer.

Virtual machines may be migrated between a source host
computing platform (“the source host”) and a destination host
computing platform (“the destination host”) connected over a
network, which may be a local-area network or a wide area-
network that may include the Internet. Migration permits a
clean separation between hardware and software, thereby
improving facilities fault management, load balancing, and
low-level system maintenance.

A brute force method of migrating virtual machines
between a source host and a destination host over a network is
to suspend the source virtual machine, copy its state to the
destination host, boot the copied virtual machine on the des-
tination host, and remove the source virtual machine. This
approach has been shown to be impractical because of the
large amount of down time users may experience. A more
desirable approach is to permit a running source virtual
machine to continue to run during the migration process, a
technique known as live migration. Live migration permits an
administrator to move a running virtual machine between
different physical machines without disconnecting a running
client or application program. For a successtful live migration,

10

15

20

25

30

35

40

45

50

55

60

65

2

memory, storage, and network connectivity of the virtual
machine needs to be migrated from the source host to the
destination host.

Related art methods of performing live migration of virtual
machines between hosts generally include a pre-copy
memory migration stage having a warm-up phase and a stop-
and-copy-phase followed by a post-copy memory migration
stage. In the pre-copy warm-up phase, a hypervisor copies all
of the memory pages associated with the source virtual
machine on the source host to the destination host while the
source virtual machine is still running on the source host. If
some memory pages change during the memory copy pro-
cess, known as dirty pages, the dirty pages may be re-copied
until the rate of re-copied pages is more than or equal to the
page dirtying rate.

During the stop-and-copy phase, the source virtual
machine is stopped, the remaining dirty pages are copied to
the destination host, and the virtual machine is resumed on the
destination host. The time between stopping the virtual
machine on the source host and resuming the virtual machine
on the destination host is known as “down-time”. Unfortu-
nately, a down-time of a live migration employing conven-
tional techniques may be as long as seconds and is approxi-
mately proportional to the size of memory and applications
running on the source virtual machine.

In the post-copy memory migration stage, the source vir-
tual machine is suspended at the source host. When the source
virtual machine is suspended, a minimal execution state of the
source virtual machine (CPU, registers, and non-pageable
memory) is transferred to the destination host. The destina-
tion virtual machine is then resumed at the destination host,
even though the entire memory state of the source virtual
machine has not yet been transferred, and still resides at the
source host. At the destination host, when the destination
virtual machine tries to access pages that have not yet been
transferred, it generates page-faults, which are trapped at the
destination host and redirected towards the source host over
the network. Such faults are referred to as network faults. The
source host responds to the network-fault by sending the
faulted page. Since each page fault of the running destination
virtual machine is redirected towards the source host, it can
degrade the applications running inside the destination virtual
machine.

Copying pages over a network is inherently unreliable. Ifa
destination host or the network between the source host and
the destination host encounters a problem, migration may
fail. In such circumstances, it may be necessary to remove the
portion of the virtual machine at the destination host and start
again with a new destination host.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, and will become apparent upon
consideration of the following detailed description, taken in
conjunction with the accompanying drawings, in which like
reference characters refer to like parts throughout, and in
which:

FIG. 1 is ablock diagram that illustrates an embodiment of
a source host computer system and one or more destination
host computer systems in which embodiments of the present
invention may be implemented.

FIG. 2 is a flow diagram illustrating one embodiment of a
method for live-migration of a virtual machine from a source
host to a destination host using a pre-warm-up migration
phase.

US 9,058,199 B2

3

FIG. 3 is a flow diagram illustrating of another embodi-
ment of amethod for live-migration of a virtual machine from
asource hostto a destination host using a pre-warm-up migra-
tion phase.

FIG. 4 is a flow diagram illustrating one embodiment of a
post warm-up stage of live-migration of a virtual machine
from a source host to a destination host.

FIG. 5 is a flow diagram illustrating one embodiment of a
method for live-migration of a virtual machine from a source
host to a plurality of destination hosts concurrently.

FIG. 6 is a flow diagram illustrating one embodiment of a
method for live-migration of a source host to one or more
destination hosts concurrently and employing a pre-warm-up
migration phase.

FIG. 7 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system within
which a set of instructions, for causing the machine to per-
form any one or more of the methodologies discussed herein,
may be executed.

DETAILED DESCRIPTION

Methods and systems for fast migrating of a source virtual
machine located on a source host to one or more destination
hosts are described herein. In one embodiment, a source
migration manager of a hypervisor is configured to perform a
live-migration of a virtual machine from a source host to a
destination host using a pre-warm-up migration phase. The
source migration manager identifies a destination host. The
source migration manager copies at least one data segment
corresponding to a portion of a state of a source virtual
machine to the destination host. As used herein, a data seg-
ment may refer to any size portion of memory, including, but
not limited to, a bit, a byte, a word, a page of memory, etc. The
source migration manager receives an indication that a warm-
up exit condition has been attained. The source migration
manager remains in a warm-up phase an continues copying
data segments corresponding to the state of the source virtual
machine to the destination host, even if the entire state of the
source virtual machine has been copied to the destination
host. The source migration manager receives a command to
migrate the source virtual machine to the destination host
after copying the at least one data segment to the destination
host. Since a warm-up exit condition has been attained, the
source migration manager exits the warm-up migration
phase.

In another embodiment of a method for live-migration of a
virtual machine from a source host to a destination host using
a pre-warm-up migration phase, the source migration man-
ager identifies destination host. The source migration man-
ager copies at least one data segment corresponding to a
portion of a state of the source virtual machine to the desti-
nation host. The source migration manager receives a com-
mand to migrate the source virtual machine to the destination
host after copying the at least one data segment to the desti-
nation host. Since a warm-up exit condition has not been
attained, the source migration manager remains in a warm-up
phase and continues copying data segments corresponding to
the state of the source virtual machine to the destination host.
The source migration manager receives an indication that a
warm-up exit has been attained. Since a warm-up exit condi-
tion has been attained, the source migration manager exits the
warm-up migration phase.

In another embodiment, a source migration manager of a
hypervisor is configured to perform a live-migration of a
virtual machine from a source hostto a plurality of destination
hosts concurrently. The source migration manager receives a

10

15

20

25

30

35

40

45

50

55

60

65

4

command to migrate a source virtual machine to a plurality of
destination hosts. The source migration manager copies a
state of the source virtual machine to the plurality of destina-
tion hosts. When the source migration manager receives an
indication of successful booting of a destination virtual
machine, the source migration manager terminates transmis-
sion of the state ofthe source virtual machine to the remaining
plurality of destination hosts.

Inyet another embodiment, a source migration manager of
a hypervisor is configured to perform a live-migration of a
virtual machine from a source host to a plurality of destination
hosts concurrently and employ a pre-warm-up phase. The
source migration manager identifies a plurality of destination
hosts. The source migration manager copies at least one data
segment corresponding to a portion of a state of a source
virtual machine to the plurality of destination hosts. The
source migration manager receives a command to migrate the
source virtual machine to one or more selected destination
hosts of the plurality of destination hosts after copying the at
least one data segment to the destination hosts. As used
herein, selected destination hosts refer to one or more desti-
nation hosts selected from the plurality of destination hosts by
the source migration manager.

When the source migration manager receives an indication
of successful booting of at least one destination virtual
machine, the source migration manager terminates transmis-
sion of the state ofthe source virtual machine to the remaining
plurality of destination hosts.

Embodiments of the present invention that employ a pre-
warm-up phase may provide a high availability solution to
live migration that is substantially faster than related art live
migration methods. Embodiments of the present invention
that employ live migration of a source virtual machine to a
plurality of destination hosts may substantially reduce the
likelihood of failure to transfer the source virtual machine.
For example, if the chance of failure for migration to one
destination host is 1%, with two destination hosts, the chance
of failure may be as low as 0.01%.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.

FIG. 1 is ablock diagram that illustrates an embodiment of
a source host computer system 100a (the “source host 100”)
and one or more destination host computer systems 10056-
1007 (the “destination hosts 1005-1007") in which embodi-
ments of the present invention may be implemented. A source
virtual machine 130q runs a guest operating system 140qa to
manage its resources. In one embodiment, the source host
100a may access multiple remote systems (e.g., the destina-
tion hosts 1105-1107) over a network 110, which may be a
private network (e.g., alocal area network (LAN), a wide area
network (WAN), intranet, etc.) or a public network (e.g., the
Internet). The source virtual machine 130a may run the same
or different guest operating system (e.g., guest OS 140aq),
such as Microsoft Windows®, Linux®, Solaris®, Mac® OS,
etc. The source host 100a may be a server, a workstation, a
personal computer (PC), a mobile phone, a palm-sized com-
puting device, a personal digital assistant (PDA), etc.

In one embodiment, the source host 100a runs a source
hypervisor 150q to virtualize access to the underlying source
host hardware, making the use of the source virtual machine
130a transparent to the guest OS 140g and users (e.g., a
system administrator) of the source host 100q. Initially, as
shown in FIG. 1, the source virtual machine 130a running the

US 9,058,199 B2

5

guest OS 140q is managed by the source hypervisor 150a. In
one embodiment, a process is provided wherein the source
virtual machine 130q is migrated from the source hypervisor
150a residing on a first host operating system (OS) 120a to
one or more destination virtual machines 1305-130% running
corresponding guest OS 1405-1407 under the control of cor-
responding one or more destination hypervisors 1505-150z.
The destination virtual machines 1305-1307 may run the
same or different guest operating systems (e.g., guest OSs
1405-1407), such as Microsoft Windows®, Linux®,
Solaris®, Mac® OS, etc. Each of the destination hosts 1005-
100~ may be a server, a workstation, a personal computer
(PC), a mobile phone, a palm-sized computing device, a
personal digital assistant (PDA), etc.

It is noted that, in an alternative embodiment, the source
hypervisor 150a and/or the destination hypervisors 15056-
150% and destination virtual machines 1305-1307 may reside
on the same host OS.

The source host 100a and the one or more destination hosts
1005-1007 also include hardware components such as one or
more physical central processing units (CPUs) 170a-170z,
memory 180a-1807, and other hardware components. In one
embodiment, the source hypervisor 150a¢ may include a
source migration manager 160a and the destination hypervi-
sors 1505-1502 may include corresponding destination
migration managers 1605-160z. It should be noted that the
“source” and “destination” designations for the hypervisors
and migration managers are provided for reference purposes
in illustrating an exemplary implementation of the migration
process according to embodiments of the present invention. It
will be further appreciated that depending on the particulars
of'a given migration event, a hypervisor may at one time serve
as the source hypervisor, while at another time the hypervisor
may serve as the destination hypervisor.

The migration managers 160a-1607 are components (e.g.,
a set of instructions executable by a processing device of the
source host 100a and the destination hosts 1005-100#, such as
CPUs 170a-170n) configured to perform the actions
described in detail below with regard to FIGS. 2-6. Although
shown as discrete components of the hypervisors 150a-150z,
the migration managers 160a-1606 may be a separate com-
ponent externally coupled to hypervisors 150a-1507.

In one embodiment, the source virtual machine 130a may
be migrated to one destination host (e.g., 1005) employing a
pre-warm-up phase of migration (e.g., see FIGS. 2 and 3). In
another embodiment, the source virtual machine 130a may be
migrated concurrently to a plurality of destination hosts
1005-1007 without a pre-warm-up migration phase (e.g., see
FIG. 5). In another embodiment, the source virtual machine
130a may be migrated concurrently to a plurality of destina-
tion hosts 1005-100% including a pre-warm-up migration
phase (e.g., see FIG. 6).

FIG. 2 is a flow diagram illustrating of one embodiment of
a method 200 for live-migration of a virtual machine from a
source host to a destination host using a pre-warm-up migra-
tion phase. Although the method 200 is described in terms of
live-migration of one source virtual machine (e.g., 130a)
residing on the source host 1004 to one destination host (e.g.,
10056), the method 200 of FIG. 2 may be applied to migration
of a virtual machine between any two hosts (100a-1007) over
the network 110 or residing on the same host machine (e.g.,
source host 100a). Method 200 may be performed by pro-
cessing logic (e.g., in computer system 700 of FIG. 7) that
may comprise hardware (e.g., circuitry, dedicated logic, pro-
grammable logic, microcode, etc.), software (such as instruc-
tions run on a processing device), firmware, or a combination
thereof. In one embodiment, method 200 is performed prima-

20

30

40

45

55

6

rily by the source migration manager 160a residing within the
source hypervisor 150q residing on the source host 100a of
FIG. 1.

Referring to FIG. 2, in one embodiment, method 200
begins when, at block 202, the source migration manager
160a identifies destination host (e.g., destination host 1005).
The identity of the destination host may be received from a
system administrator (not shown) or a computer-generated
process residing on the source host 100a or from a system
migration manager (not shown) residing on a separate system
server (not shown). For example, in one embodiment, the
source host 100a and the destination host 1005 may be two
servers connected by the network 110, two virtual machines
residing on the source host 100a, two nodes of the same or
separate clouds, clusters, rings, etc. At block 204, the source
migration manager 160a copies at least one data segment
corresponding to a portion of a state of the source virtual
machine 130a to the destination host 1005 under the control
of the destination migration manager 1605. At block 206, the
source migration manager 160a receives an indication that a
warm-up exit condition (described below) has been attained.
At block 208, the source migration manager 160a remains in
a warm-up phase and continues copying data segments cor-
responding to the state of the source virtual machine 130a to
the destination host 1005. In one embodiment, the source
migration manager 160a remains in a warm-up phase and
continues copying data segments corresponding to the state of
the source virtual machine 1304 to the destination host 1004
even when the complete state of the source virtual machine
130a has been copied to the destination host 1005.

At block 210, the source migration manager 160a receives
acommand (e.g., from a system administrator) to migrate the
source virtual machine 130q to the destination host 1005 after
copying the at least one data segment to the destination host
1004. Since a warm-up exit condition has been attained, at
block 212, the source migration manager 160qa exits a pre-
warm-up migration phase. In one embodiment, the source
migration manager 160a exits a warm-up phase of migration
and may enter a stop-and-copy phase (described below).

FIG. 3 is a flow diagram illustrating of another embodi-
ment of a method 300 for live-migration of a virtual machine
from a source host to a destination host using a pre-warm-up
migration phase. Although the method 300 is described in
terms of live-migration of one source virtual machine (e.g.,
130a) residing on the source host 1004 to one destination host
(e.g., 1005), the method 300 of FIG. 3 may be applied to
migration of a virtual machine between any two hosts (100a-
100%) over the network 110 or residing on the same host
machine (e.g., source host 100a). Method 300 may be per-
formed by processing logic (e.g., in computer system 700 of
FIG. 7) that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (such
as instructions run on a processing device), firmware, or a
combination thereof. In one embodiment, method 300 is per-
formed primarily by the source migration manager 160a
residing within the source hypervisor 150a residing on the
source host 1004 of FIG. 1.

Referring to FIG. 3, in one embodiment, method 300
begins when, at block 302, the source migration manager
160a identifies destination host (e.g., destination host 1005).
The identity of the destination host may be received from a
system administrator (not shown) or a computer-generated
process residing on the source host 100a or from a system
migration manager (not shown) residing on a separate system
server (not shown). For example, in one embodiment, the
source host 100a and the destination host 1005 may be two
servers connected by the network 110, two virtual machines

US 9,058,199 B2

7

residing on the source host 1004, two nodes of the same or
separate clouds, clusters, rings, etc. At block 304, the source
migration manager 160a copies at least one data segment
corresponding to a portion of a state of the source virtual
machine 130a to the destination host 1005 under the control
of'the destination migration manager 16056. At block 306, the
source migration manager 160a receives a command (e.g.,
from a system administrator) to migrate the source virtual
machine 130q to the destination host 1005 after copying the at
least one data segment to the destination host 1005. At block
308, since a warm-up exit condition has not been attained, the
source migration manager 160a remains in a warm-up phase
and continues copying data segments corresponding to the
state of the source virtual machine 130a to the destination
host 1005. In one embodiment, the source migration manager
160a remains in a warm-up phase and continues copying data
segments corresponding to the state of the source virtual
machine 130a to the destination host 1005 even when the
complete state of the source virtual machine 130a has been
copied to the destination host 1005.

At block 310, the source migration manager 160a receives
an indication that a warm-up exit condition (described below)
has been attained after copying at least one data segment.
Since a warm-up exit condition has been attained, at block
312, the source migration manager 160a exits a pre-migration
phase. In one embodiment, the source migration manager
160a exits a warm-up phase of migration and may enter a
stop-and-copy phase (described below).

More particularly, between the time of receiving the iden-
tity of the destination host 1005 and receiving the explicit
command to migrate the source virtual machine 130q to cre-
ate a destination virtual machine 1305 under the control of the
destination hypervisor 1505, the source migration manager
160a executes a pre-copy of data segments (e.g., a pre-warm-
up phase of live migration) during a live-migration warm-up
phase in order to shorten a length of time of the stop-and-copy
phase of migration. The stop-and-copy phase may be signifi-
cantly reduced (down to milliseconds). This live migration
pre-warm-up phase continues indefinitely until at least the
source migration manager 160a receives the explicit com-
mand (e.g., from a system administrator) to migrate, even if
certain data segments are “dirtied” during the transfer, and
even if the entire state of the source virtual machine 130q has
been copied to the destination host 1005.

A warm-up exit condition may take many forms. In one
embodiment, a warm-up exit condition may be attained when
all of the state of the source virtual machine 130a has been
transferred to the destination host 1005 or when all of state
related to memory has been transferred. In another embodi-
ment, a system administrator may specify a predetermined
downtime as a warm-up exit condition such that (the size of
the state to be copied)/(rate of copying data segments)<down-
time. In still another embodiment, the rate of changing data
segments may be used to determine the warm-up exit condi-
tion such that (the size of the state to be copied)/(rate of
copying data segments)—(rate of change of data segments))
<downtime.

FIG. 4 is a flow diagram illustrating one embodiment of a
post warm-up stage 400 of live-migration of a virtual machine
from a source host to a destination host. At block 402, the
source migration manager 160a stops the source virtual
machine 130a and copies a remaining portion of the state of
the source virtual machine 1304 to the destination host 1005.
Once the full state of the source virtual machine 130a has
been transferred to the destination host 1005 under the control
of the destination migration manager 1605 of the destination
hypervisor 1505, the destination migration manager 1605

20

35

40

45

8

attempts to start the destination virtual machine 1305 corre-
sponding to the state of the source virtual machine 130a on
the destination host 1005. If the destination virtual machine
1304 successfully boots, the destination migration manager
1604 transmits an indication to the source migration manager
160a over the network 110 of successfully starting the desti-
nation virtual machine 1305. At block 404, the source migra-
tion manager 160q receives an indication that the destination
virtual machine 1305 was successtully started on the desti-
nation host 1005. In one embodiment, at block 406, the steps
of the post-copy memory migration stage described above
may be carried out. At block 408, the source migration man-
ager 160a may then terminate the source virtual machine
130a. In another embodiment, once the source migration
manager 160a receives an indication that the destination vir-
tual machine 1305 was successfully started on the destination
host machine 1005, then the source migration manager 160a
may simply terminate the source virtual machine 130aq.

If the destination virtual machine 13056 does not success-
fully boot, the destination migration manager 1606 may
transmit an indication of failure over the network 110 to the
source migration manager 160a to re-start the destination
virtual machine 1305. More particularly, when the source
migration manager 160a detects a failure in copying the state
of the source virtual machine 1305 to the destination host
1105 and/or starting a destination virtual machine 13056 cor-
responding to the copied state of the source virtual machine
1305 on the destination host 1105, in one embodiment, the
source migration manager 160a may restart the source virtual
machine 130q and copy the state of the source virtual machine
130a to at least one other destination host (e.g., the destina-
tion host 100%) that is not the original destination host 1005.

In an embodiment, the state of the source virtual machine
130a located on a source host 100a may be copied to the
destination host 1005 from a proxy host (e.g., the destination
host 110z) that is separate from a source host 100a.

FIG. 5 is a flow diagram illustrating one embodiment of a
method 500 for live-migration of a virtual machine from a
source host (e.g., 100a) to a plurality of destination hosts
(e.g., 1005-1007) concurrently. The method 500 of FIG. 5 is
applicable to the migration of a source virtual machine 130a
from a source host 100a to a plurality of destination hosts
1005-1007 over the network 110 or within the same host (e.g.,
source host 100a). Method 500 may be performed by pro-
cessing logic (e.g., in computer system 700 of FIG. 7) that
may comprise hardware (e.g., circuitry, dedicated logic, pro-
grammable logic, microcode, etc.), software (such as instruc-
tions run on a processing device), firmware, or a combination
thereof. In one embodiment, method 500 is performed prima-
rily by the source migration manager 160a residing within the
source hypervisor 150a of the source host 100a of FIG. 1.

Referring to FIG. 5, in one embodiment, method 500
begins when, at block 502, the source migration manager
160a receives a command (e.g., from a system administrator)
to migrate the source virtual machine 130a to a plurality of
destination hosts (e.g., 1005-100z). The source host 1004 and
the destination hosts 1005-1007 may be servers connected by
the network 110, a plurality of virtual machines residing on
the source host 100, a plurality of nodes of the same or
separate clouds, clusters, rings, etc. The source migration
manager 160a may identify destination hosts (e.g., 1005-
100#) either prior to receiving the command to migrate the
source virtual machine 130a, oridentities of destination hosts
may accompany data within the command to migrate. The
identities of the destination hosts (e.g., 10056-100%) may be
received from a system administrator (not shown) or a com-
puter-generated process residing on the source host 100a or

US 9,058,199 B2

9

from a system migration manager module (not shown) under
the control of a separate system server (not shown). In an
embodiment, the plurality of destination hosts (e.g., 10054-
100%) may be selectable such that no two destination hosts
share a common intervening network node in a network path
between the source host 100a and the plurality of destination
hosts (e.g., 10056-1007. In one embodiment, the source migra-
tion manager 160a may pre-map nodes in the network 110
between the source host 100a and two or more of the desti-
nation hosts (e.g., 1005-1007) and identify common network
nodes in respective paths. If a common network node is
identified, another destination host may be selected or the
path through the network 110 specified to avoid common
intervening network nodes by means known in the art. At
block 504, the source migration manager 130a copies a state
of the source virtual machine 130qa to the plurality of desti-
nation hosts 1005-1007. Migration to a plurality of destina-
tion hosts 1005-100z may be carried out concurrently.

Once the full state of the source virtual machine 1304 has
been transferred to at least one destination host (e.g., 1005)
under the control of a destination migration manager (e.g.
1606) of a destination hypervisor (e.g., 1505), the destination
migration manager 1605 may attempt to start a destination
virtual machine (e.g., 1305) corresponding to the state of the
source virtual machine 130a on the destination host 1005. If
the destination virtual machine 1305 successtully boots, the
destination migration manager 1605 transmits over the net-
work 110 to the source migration manager 160q an indication
of successfully starting the destination virtual machine 1304.

At block 506, the source migration manager 160a receives
an indication that the destination virtual machine 1305 was
successfully started on the destination host 1005. At block
508, in one embodiment, the source migration manager 160a
explicitly terminates transmission of the state of the source
virtual machine 130a to the remaining plurality of destination
hosts 100c-1007 after receiving a first indication of success-
fully starting the first destination virtual machine 1305. In
another embodiment, the source migration manager 160a
may implicitly terminate transmission of the state of the
source virtual machine 130a to a remaining plurality of des-
tination hosts by simply stopping or terminating the source
virtual machine 130a. If an explicit termination command is
given, then the termination command may include an indica-
tion that the remaining plurality of destination migration
managers remove a portion of the state of the source virtual
machine 130a copied to a destination host. In one embodi-
ment, the source migration manager 160a may execute a
post-copy memory migration stage (as described above). At
block 510, the source migration manager 160a terminates the
source virtual machine 130a.

In one embodiment, the source migration manager 160a
may remain in a warm-up phase of migration corresponding
to the source virtual machine 130a and continue copying data
segments corresponding to the state of the source virtual
machine 130a to the plurality of destination hosts 1005-1007
when a warm-up exit condition has not been attained corre-
sponding the source virtual machine 130q. In an embodiment,
the source virtual machine 130a exits a warm-up phase of
migration corresponding to the source virtual machine 130a
after a warm-up exit condition has been attained correspond-
ing to the source virtual machine 130qa. In an embodiment, a
warm-up exit condition corresponding to the source virtual
machine 130a may be defined as a condition that a warm-up
exit condition has been attained corresponding to a predeter-
mined percentage of destination hosts.

If none of the destination virtual machine 1305-130% suc-
cessfully boots, each of the destination migration managers

30

35

40

45

50

65

10

1605-1607 may transmit over the network 110 to the source
migration manager 160q an indication of failure to start their
respective destination virtual machine 1305-1307. Once the
source migration manager 160a receives an indication from
each of the destination migration managers 1605-1607 that
their respective destination virtual machines 1305-130. were
not successfully started on the destination hosts 1005-100z,
in one embodiment, the source migration manager 160a may
restart the source virtual machine 130a and copy the state of
the source virtual machine 130a to at least one other host that
is not one of the original plurality of destination hosts 10054-
1007. In another embodiment, the source migration manager
160a may restart the source virtual machine 130q and attempt
to re-copy the state of the source virtual machine 130q to the
same plurality of destination hosts 1005-1007 for a pre-de-
termined number of times before giving up or until a prede-
termined timeout occurs.

In an embodiment, the state of the source virtual machine
130a located on a source host 100a may be copied to the
plurality of destination hosts 10056-100z from a proxy host
separate from the source host 100a. In one embodiment, once
a destination virtual machine is successfully started, the cor-
responding destination migration manager may cascade
migration of the source virtual machine 130a to a second
plurality of destination hosts, etc.

FIG. 6 is a flow diagram illustrating one embodiment of a
method 600 for live-migration of a source host (e.g., 100a) to
one or more destination hosts (e.g., 1005-1007) concurrently
and employing a pre-warm-up phase. The method 600 of FIG.
6 may be applied to migration of a source virtual machine
130a from a source host 1004 to a plurality of destination
hosts 1005-100% over a network 110 or residing on the same
host (e.g., the source host 100a). Method 600 may be per-
formed by processing logic (e.g., in computer system 700 of
FIG. 7) that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (such
as instructions run on a processing device), firmware, or a
combination thereof. In one embodiment, method 600 is per-
formed primarily by the source migration manager 160a
residing within the source hypervisor 150a of the source host
100a of FIG. 1.

Referring to FIG. 6, in one embodiment, method 600
begins when, at block 602, the source migration manager
160a identifies a plurality of destination hosts (e.g., destina-
tion hosts 1005-100%). The source migration manager 160a
may receive the identities of destination hosts (e.g., 1005-
1007) prior to receiving a command to migrate the source
virtual machine 130a. The identities of the destination hosts
(e.g., 10056-1002) may be received from a system administra-
tor (not shown) or a computer-generated process residing on
the source host 100a or from a system migration manager
module (not shown) under the control of a separate system
server (not shown). In an embodiment, the plurality of desti-
nation hosts (e.g., 1005-1007) may be selectable such that no
two destination hosts share a common intervening network
node. In one embodiment, the source migration manager
160a may pre-map nodes in the network 110 between the
source host 1004 and two or more of the destination hosts
(e.g., 1005-1007) and identify common nodes in respective
paths. If a common node is identified, another destination
host may be selected or the path through the network 110
specified to avoid common intervening nodes by means
known in the art.

Atblock 604, the source migration manager 160a copies at
least one data segment corresponding to a portion of a state of
a source virtual machine (e.g., the source virtual machine
130a) to the plurality of destination hosts 10056-1007.

US 9,058,199 B2

11

At block 606, the source migration manager 160a receives
acommand (e.g., from a system administrator) to migrate the
source virtual machine 130a to one or more selected destina-
tion hosts of the plurality of destination hosts 1005-1007 after
copying the at least one data segment. Between the time of
receiving the identities of the destination hosts 1005-1007
and at least the time of receiving an explicit command to
migrate the source virtual machine 130a to the destination
hosts 1005-1007, the source migration manager 160a pre-
copies data segments of the virtual machine 1304 to each of
the destination hosts 10056-100z in a live-migration pre-
warm-up phase as described above with respect to FIGS. 2
and 3. This live migration pre-warm-up phase continues
indefinitely until at least the explicit command to migrate is
received, even if certain data segments are “dirtied” during
the transfer process, and even if the entire state of the source
virtual machine 130qa has been copied to each of the destina-
tion hosts 1005-1007.

Thus, in one embodiment, before receiving a command to
migrate the source virtual machine 130q, the source migra-
tion manager 160a may remain in a warm-up phase and
continue copying data segments corresponding to the state of
the source virtual machine 1304 to the one or more selected
destination hosts of the plurality of destination hosts 10054-
1007 when the complete state has been copied to at least one
of the plurality of destination hosts 1005-1007. In another
embodiment, the source migration manager 160a may remain
in a warm-up phase and continue copying data segments
corresponding to the state of the source virtual machine 130a
to the one or more selected destination hosts of the plurality of
destination hosts 1005-1007 when a warm-up exit condition
has not been attained corresponding the source virtual
machine 130a. In an embodiment, the source migration man-
ager 160a exits a warm-up phase of migration corresponding
to the source virtual machine 130a after a warm-up exit
condition has been attained corresponding to the source vir-
tual machine 130qa. In an embodiment, a warm-up exit con-
dition corresponding to the source virtual machine 130a may
be defined as a condition that a warm-up exit condition has
been attained corresponding to a predetermined percentage of
selected destination hosts 1005-1007.

At block 608, the source migration manager 160a receives
an indication that a destination virtual machine (e.g., 1305)
was successfully started on at least one of the plurality of
destination hosts (e.g., 1005). At block 610, the source migra-
tion manager 160q terminates copying the state of the source
virtual machine 130a to the remaining plurality of destination
hosts (e.g., 130¢-130r). Atblock 612, in one embodiment, the
source migration manager 160a¢ may terminate the source
virtual machine 130a.

In one embodiment, if no virtual machine is successfully
started on at least one of the plurality of destination hosts
1005-1007, the source migration manager 160a may copy the
state of the source virtual machine 130a to at least one other
machine that is not one of plurality of destination hosts 1005-
1007.

More particularly, if the source migration manager 160a
detects a failure in copying the state of the source virtual
machine 130q to at least one of the plurality of destination
hosts 1005-100z, or if the source migration manager 160a
detects a failure in starting a virtual machine corresponding to
the copied state of the source virtual machine 130a on at least
one of the plurality of destination hosts 1005-1007, the source
migration manager 160a may restart the source virtual
machine 130q and copy the state of the source virtual machine
130qa to at least one other machine that is not one of the
original plurality of selected destination hosts 1005-100z.

20

35

40

45

50

12

In an embodiment, the state of the source virtual machine
130a located on the source host 100a may be copied to the
plurality of destination host machines 1005-100% from a
proxy host separate from the source host 100a (e.g., the
destination host 100z).

In one embodiment, once a destination virtual machine is
successfully started, the corresponding destination migration
manager may cascade migration of the source virtual
machine 130q to a second plurality of destination hosts, etc.

FIG. 7 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 700
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a local area network (LAN), an intranet, an
extranet, or the Internet. The machine may operate in the
capacity of a server or a client machine in a client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
personal digital assistant (PDA), a cellular telephone, a web
appliance, a server, a network router, switch or bridge, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specitfy actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or multiple
sets) of instructions to perform any one or more of the meth-
odologies discussed herein.

The exemplary computer system 700 includes a processing
device 702, a main memory 704 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or Ram-
bus DRAM (RDRAM), etc.), a static memory 706 (e.g., flash
memory, static random access memory (SRAM), etc.), and a
data storage device 718, which communicate with each other
via a bus 730.

Processing device 702 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 702 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
orthe like. Processing device 702 is configured to execute the
source migration manager 160a for performing the opera-
tions and steps discussed herein.

Computer system 700 may further include a network inter-
face device 708. Computer system 700 also may include a
video display unit 710 (e.g., a liquid crystal display (LCD) or
a cathode ray tube (CRT)), an alphanumeric input device 712
(e.g., akeyboard), a cursor control device 714 (e.g., a mouse),
and a signal generation device 716 (e.g., a speaker).

Data storage device 718 may include a machine-readable
storage medium (or more specifically a computer-readable
storage medium) 720 having one or more sets of instructions
(e.g., the source migration manager 160a) embodying any
one or more of the methodologies of functions described
herein. The source migration manager 160a may also reside,
completely or at least partially, within main memory 704
and/or within processing device 702 during execution thereof

US 9,058,199 B2

13

by computer system 700; main memory 704 and processing
device 702 also constituting machine-readable storage
media. The source migration manager 160a may further be
transmitted or received over a network 726 via network inter-
face device 708.

Machine-readable storage medium 720 may also be used to
store the device queue manager logic persistently. While
machine-readable storage medium 720 is shown in an exem-
plary embodiment to be a single medium, the term “machine-
readable storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of instructions. The term “machine-readable
storage medium” shall also be taken to include any medium
that is capable of storing or encoding a set of instruction for
execution by the machine and that causes the machine to
perform any one or more of the methodologies of the present
invention. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media.

The components and other features described herein can be
implemented as discrete hardware components or integrated
in the functionality of hardware components such as ASICs,
FPGAs, DSPs or similar devices. In addition, these compo-
nents can be implemented as firmware or functional circuitry
within hardware devices. Further, these components can be
implemented in any combination of hardware devices and
software components.

Some portions of the detailed descriptions are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-
consistent sequence of steps leading to a desired result. The
steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such

as “enabling”, “transmitting”, “requesting”, “identifying”,
“querying”, “retrieving”, ‘“forwarding”, “determining”,
“passing”, “processing”, “disabling”, or the like, refer to the

action and processes of a computer system, or similar elec-
tronic computing device, that manipulates and transforms
data represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such information
storage, transmission or display devices.

Embodiments of the present invention also relate to an
apparatus for performing the operations herein. This appara-
tus may be specially constructed for the required purposes or
it may comprise a general purpose computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a com-
puter readable storage medium, such as, but not limited to,

20

30

40

45

60

14

any type of disk including floppy disks, optical disks, CD-
ROMs and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, flash memory devices
including universal serial bus (USB) storage devices (e.g.,
USB key devices) or any type of media suitable for storing
electronic instructions, each of which may be coupled to a
computer system bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein or it may prove con-
venient to construct more specialized apparatus to perform
the required method steps. The required structure for a variety
of'these systems will be apparent from the description above.
In addition, the present invention is not described with refer-
ence to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

Itis to be understood that the above description is intended
to be illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading
and understanding the above description. Although the
present invention has been described with reference to spe-
cific exemplary embodiments, it will be recognized that the
invention is not limited to the embodiments described, but can
be practiced with modification and alteration within the spirit
and scope of the appended claims. Accordingly, the specifi-
cation and drawings are to be regarded in an illustrative sense
rather than a restrictive sense. The scope of the invention
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What is claimed is:

1. A method, comprising:

identifying, by a source host processor, a destination host

as an indication to the source host processor to enter a
pre-warm-up phase for live migration of a source virtual
machine residing on the source host processor to the
destination host;

responsive to the source host processor entering the pre-

warm-up phase, copying, by the source host processor,
one or more data segments corresponding to a portion of
a state of the source virtual machine to the destination
host, the one or more data segments corresponding to a
portion of memory employed by the source virtual
machine; and

receiving acommand to migrate the source virtual machine

to the destination host after copying the one or more data
segments to the destination host.

2. The method of claim 1, further comprising remaining in
the pre-warm-up phase and continuing copying data seg-
ments corresponding to the state of the source virtual machine
to the destination host when a complete state has been copied
to the destination host.

3. The method of claim 1, further comprising remaining in
the pre-warm-up phase and continuing copying data seg-
ments corresponding to the state of the source virtual machine
to the destination host when a warm-up exit condition has not
been attained.

4. The method of claim 1, further comprising exiting the
pre-warm-up phase of migration after a warm-up exit condi-
tion has been attained.

5. The method of claim 4, further comprising:

stopping the source virtual machine;

US 9,058,199 B2

15

copying a remaining portion of the state of the source

virtual machine to the destination host; and

transmitting a command to the destination host to start a

virtual machine corresponding to the copied state of the
source virtual machine.

6. The method of claim 4, further comprising, receiving an
indication that a virtual machine corresponding to the copied
state of the source virtual machine was successfully started on
the destination host.

7. The method of claim 6, further comprising terminating
the source virtual machine.

8. The method of claim 5, further comprising:

detecting a failure in at least one of copying the state of the

source virtual machine to the destination host or starting

a virtual machine corresponding to the copied state of

the source virtual machine on the destination host;
restarting the source virtual machine; and

copying the state of the source virtual machine to another

host machine that is not the destination host.

9. The method of claim 1, wherein the state of the source
virtual machine located on the source host is copied to the
destination host from a proxy host separate from the source
host and the command to migrate a source virtual machine to
the destination host is received from the source host.

10. A method, comprising:

identifying, by a source host processor, a destination host

as an indication to the source host processor to enter a
pre-warm-up phase for live migration of a source virtual
machine to the destination host;
responsive to the source host processor entering the pre-
warm-up phase, copying, by the source host processor,
one or more data segments corresponding to a portion of
a state of the source virtual machine to the destination
host, the one or more data segments corresponding to a
portion of memory employed by the source virtual
machine;
receiving an indication that a warm-up exit condition has
been attained when all of the state of the source virtual
machine has been transferred to the destination host; and

continuing copying data segments corresponding to the
state of the source virtual machine to the destination
host.

11. The method of claim 10, further comprising remaining
in the pre-warm-up phase and continuing copying data seg-
ments corresponding to the state of the source virtual machine
to the destination host when a complete state has been copied
to the destination host.

12. The method of claim 10, further comprising:

receiving a command to migrate the source virtual machine

to the destination host and

exiting the pre-warm-up phase of migration after the

warm-up exit condition has been attained.

13. The method of claim 12, further comprising:

stopping the source virtual machine;

copying a remaining portion of the state of the source

virtual machine to the destination host; and

transmitting a command to the destination host to start a

virtual machine corresponding to the copied state of the
source virtual machine.

14. The method of claim 13, further comprising, receiving
an indication that a virtual machine corresponding to the
copied state of the source virtual machine was successfully
started on the destination host.

20

25

30

40

45

60

16

15. The method of claim 14, further comprising terminat-
ing the source virtual machine.

16. The method of claim 13, further comprising:

detecting a failure in at least one of copying the state of the

source virtual machine to the destination host or starting

a virtual machine corresponding to the copied state of

the source virtual machine on the destination host;
restarting the source virtual machine; and

copying the state of the source virtual machine to another

host machine that is not the destination host.

17. The method of claim 10, wherein the state of the source
virtual machine located on the source host is copied to the
destination host from a proxy host separate from the source
host and the command to migrate a source virtual machine to
the destination host is received from the source host.

18. A computer system, comprising:

a memory;

a source host processor, coupled to the memory; and

an operating system hosted by the computer system, hav-

ing access to the memory and use of the source host

processor, the operating system to:

identify, by the source host processor, a destination host
as an indication to the source host processor to enter a
pre-warm-up phase for live migration of a source
virtual machine on the source host processor to the
destination host;

responsive to the source host processor entering the pre-
warm-up phase, copy, by the source host processor,
one or more data segments corresponding to a portion
of a state of the source virtual machine to the destina-
tion host, the one or more data segments correspond-
ing to a portion of memory employed by the source
virtual machine;

receive a command to migrate the source virtual
machine to the destination host after copying the one
or more data segments; and

continue copying data segments corresponding to the
state of the source virtual machine to the destination
host when a warm-up exit condition has not been
attained.

19. A non-transitory computer-readable storage medium
including instructions that, when accessed by a processor,
cause the processor to perform operations, comprising:

identify, by a source host processor, a destination host as an

indication to the source host processor to enter a pre-
warm-up phase for live migration of a source virtual
machine residing on the source host processor to desti-
nation host;

responsive to the source host processor entering the pre-

warm-up phase, copy, by the source host processor, one
or more data segments corresponding to a portion of the
state of the source virtual machine to the destination
host, the one or more data segments corresponding to a
portion of memory employed by the source virtual
machine; and

receive a command to migrate the source virtual machine

to the destination host after copying the one or more data
segments to the destination host.

20. The non-transitory computer-readable storage medium
of claim 19, further comprising remain in the pre-warm-up
phase and continuing copy data segments corresponding to
the state of the source virtual machine to the destination host
when a warm-up exit condition has not been attained.

#* #* #* #* #*

